The Basics:

Hemp is a distinct variety of the plant species Cannabis sativa L. that grows to a height anywhere from 4-15 ft (1.2-4.5 m) and up to 0.75 in (2 cm) in diameter. The plant consists of an inner layer called the pith surrounded by woody core fiber, which is often referred as hurds. Bast fibers form the outer layer. The primary bast fiber is attached to the core fiber by pectin—a glue-like substance. The primary fibers are used for textiles, cordage, and fine paper products. The wood-like core fiber is used for animal bedding, garden mulch, fuel, and an assortment of building materials.

With similar leaf shape and smell, Marijuana and Hemp are often confused, which leads hemp products to face ridicule and hesitation. The major difference is between the two is the tetrahydrocannabinol (THC) content, the ingredient that produces the high when smoked. Marijuana can contain as much as 20% THC, compared to less than 1% for industrial hemp. Despite this difference, some countries are reluctant to legalize growing of hemp, since there is a fear this will make it more difficult to control the use of the drug. Most hemp varieties also have a hollow stalk that have a very high fiber content (35%), in contrast to marijuana varieties that usually have a solid stalk having low fiber content (15%). 

Farmers who grow hemp claim it is a great rotation crop and can be substituted for almost any harvest. It grows without requiring pesticides and is good at aerating the soil. On a per-acre basis, one estimate claims hemp nets farmers more income ($250-$300) than either corn or soybeans ($100-$200). A full crop of hemp only takes 100 days to grow, yielding four times more paper per acre, when compared over a similar 20 year period with redwood trees in the northwest United States. However, there are other varieties of trees that yield two to three times more than hemp.

dvocates of hemp claim that it can be used in 25,000 different products, from clothing to food to toiletries. Until the nineteenth century, hemp was used in 90% of ships' canvas sails, rigging, and nets (and thus it was a required crop in the American colonies). Today, hemp fiber is being used as a replacement for fiberglass 

in automotive components and made into cloth for window dressings, shower curtains, and upholstery. China is the world's largest producer of hemp fabric, whereas India produces the most hemp overall.

Other products made from hemp fiber include: insulation, particleboard, fiberboard, rope, twine, yarn, newsprint, cardboard, paper, horse stable bedding, and compost. Hemp bedding has been found superior to straw and other materials for horse stalls in reducing the smell of ammonia. Hemp seed is used to make methanol and heating oil, salad oil, pharmaceuticals, soaps, paint, and ink.

The Process:

Hemp is an annual plant that grows from seed. It grows in a range of soils, but tends to grow best on land that produces high yields of corn. The soil must be well drained, rich in nitrogen, and non-acidic. Hemp prefers a mild climate, humid atmosphere, and a rainfall of at least 25-30 in (64-76 cm) per year. Soil temperatures must reach a minimum of 42-46°F (5.5-7.7°C) before seeds can be planted.

  • 1 The crop is ready for harvesting high quality fiber when the plants begin to shed pollen, in mid-August for North America. Harvesting for seed occurs four to six weeks later. Fiber hemp is normally ready to harvest in 70-90 days after seeding. A special machine with rows of independent teeth and a chopper is used. To harvest hemp for textiles, specialized cutting equipment is required. Combines are used for harvesting grain, which are modified to avoid machine parts being tangled up with bast fiber.

  • Once the crop is cut, the stalks are allowed to rett (removal of the pectin[binder] by natural exposure to the environment) in the field for four to six weeks—depending on the weather—to loosen the fibers. While the stalks lay in the field, most of the nutrients extracted by the plant are returned to the soil as the leaves decompose. The stalks are turned several times using a special machine for even retting and then baled with existing hay harvesting equipment. Bales are stored in dry places, including sheds, barns, or other covered storage. The moisture content of hemp stalks should not exceed 15%. When planted for fiber, yields range from 2-6 short tons (1.8-5.4t) of dry stalks per acre, or from 3-5 short tons (2.7-4.5 t) of baled hemp stalks per acre.

  • Hemp seeds must be properly cleaned and dried before storing. Extraction of oil usually takes place using a mechanical expeller press under a nitrogen atmosphere, otherwise known as mechanical cold pressing. Protection from oxygen, light, and heat is critical for producing a tasty oil with an acceptable shelf-life. Solvent extraction methods are also emerging for removing oil since they achieve higher yields. Such methods use hexan, liquid carbon dioxide, or ethanol as the solvent. Refining and deodorizing steps may be required for cosmetic manufacturers. 

  • A dehulling step, which removes the crunchy skin from the seed using a crushing machine, may be required. Modifications to existing equipment may be required to adequately clean the seeds of hull residues.
  • To separate the woody core from the bast fiber, a sequence of rollers (breakers) or a hammermill are used. The bast fiber is then cleaned and carded to the desired core content and fineness, sometimes followed by cutting to size and baling. After cleaning and carding, secondary steps are often required. These include matting for the production of non-woven mats and fleeces, pulping (the breakdown of fiber bundles by chemical and physical methods to produce fibers for paper making), and steam explosion, a chemical removal of the natural binders to produce a weavable fiber. Complete processing lines for fiber hemp have outputs ranging from 2-8 short tons/hour (1.8-7.2 t/hr)
  • The primary fiber is pressed into a highly compressed bale, similar to other fibers like cotton, wool, and polyester. Other products, such as horse bedding, are packaged in a compressed bale.
  • Bast fibers are usually used in paper, which are put into a spherical tank called a digester with water and chemicals. This mixture is heated for up to eight hours at elevated temperature and pressure until all fibers are separated from each other. Washing with excess water removes the chemicals and the extracted binding components (pectin). The clean fibers are then fed into a machine called a Hollander beater, which consists of a large tub equipped with a wheel revolving around a horizontal axis. This beating step, which lasts for up to 12 hours, cuts the fibers to the desired length and produces the required surface roughness for proper bonding. Bleaching chemicals are sometimes added during this step or to separate tanks with the fibers. The bleached pulp is then pumped to the paper machine or pressed to a dryness suitable for transportation to a paper mill at another location

Quality Control:

  • Hemp fibers are tested for tensile strength, fineness (fiber diameter), and the color is recorded. Moisture content is recorded during every stage of the growing and production process. The THC content of the plant is also contiguously tested to make sure that the level does not exceed the 0.3% mark. Research is still being conducted on the effects that hemp would have on the industry. Set standards are constantly being altered and changed.

Byproducts/Waste:

  • The harvested hemp not used is burned. During fiber processing, the core fiber is saved and usually used to make paper, horse bedding, or construction materials. Most hemp producers recycle the core fiber by removing dust, then baling and packaging. The dust can be pressed into pellets used for fuel. The dirt and small chips of core are also used as a high nutrient soil additive.